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e-mail: dolivero@matem.unam.mx

ABSTRACT

For a family F of n mutually disjoint unit disks in the plane, we show

that if any four disks are intersected by a line then there is a line that

intersects at least n − 1 disks of F .

∗ Supported by an NSERC Discovery Grant.
∗∗ Supported by OTKA Grant F042959.
† Supported by CONACYT CCDG 50151.

Received January 10, 2006 and in revised form January 3, 2008

239



240 T. BISZTRICZKY, F. FODOR AND D. OLIVEROS Isr. J. Math.

1. Introduction

Let F denote a family of ovals (compact convex sets with non-empty interior)

in the Euclidean plane. F has a transversal and the property T , if there

exists a line that intersects all members of F . If there is a line that meets

all but at most k members of F , then F has the property T − k. Next, if

each n-element subfamily of F has a transversal, then F has property T (n).

Finally, an m-transversal of F is a line that meets at least m elements of F .

An m-transversal is separating if there are elements of F in each of the open

half-planes determined by it.

A central problem of Transversal Theory is to determine for a given F , the

smallest n such that T (n) implies T . We recall briefly the history of the problem

and refer to [4], [8], [10], [15] and [18] for a more detailed review.

A. (L. Santaló [23], 1940). There is a finite family F of not mutually

disjoint ovals such that T (n) does not imply T for any n < |F|.
B. (H. Hadwiger [13], 1956). If F is an infinite family of mutually disjoint

congruent ovals, then T (3) implies T .

Henceforth, we assume that F is finite and that the ovals of F are mutually

disjoint.

C. (B. Grünbaum [11], 1958). There is a family F of congruent ovals such

that T (5) does not imply T .

D. (H. Tverberg [25], 1989). If F is a family of translates of an oval, then

T (5) implies T .

E. (B. Aronov, J. Goodman, R. Pollack and R. Wenger [2], 2000). There

is a family F of unit disks such that T (4) does not imply T .

F. (M. Katchalski, T. Lewis [22], 1980). If F is a family of translates of

an oval, then T (3) implies T − k for some universal constant k.

G. (A. Bezdek [3], 1991). There is a family F of unit disks such that T (3)

does not imply T − 1.

H. (T. Kaiser [21], 2002). If F is a family of unit disks, then T (3) implies

T − 12.

I. (A. Heppes [16], 2004). If F is a family of unit disks, then T (3) implies

T − 2.

Although in this article we concentrate on families of unit disks, we mention

that it is widely believed that T (4) ⇒ T − 1 for families F(K) of pairwise
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disjoint translates of an arbitrary oval K. The following argument shows that

if there exists a counter-example to this conjecture, then there is one with at

most twelve elements. The original argument is described in [24] for the case

when F has the property T (3) and T − 3 but not T − 2; and it also appears in

[18].

Suppose that the family F(K) has properties T (4) and T − 2 but not T − 1

and also assume that F is minimal. We are going to construct a hypergraph G

whose vertices correspond to the members of F . To every 5-element subset of

F(K), which does not have property T , associate an edge of G. In this way,

we obtain a 5-uniform hypergraph. By Tverberg’s theorem, there is at least

one 5-element subset of F which does not have property T , so G has at least

one edge. The transversal number of a hypergraph is the minimum number

of vertices that intersect all edges. In the case of G, the transversal number is

clearly two because F has the property T − 2. It is a known fact in extremal

graph theory that a 5-uniform hypergraph with transversal number two has an

induced subgraph G′ on at most twelve vertices with transversal number two.

Such a G′ induces a subfamily of F(K) which has at most twelve members, has

properties T (4) and T − 2 but not T − 1. Such a subfamily would clearly be a

counterexample for the conjecture.

Furthermore, if F(K) is a family of pairwise disjoint translates of an oval

K which has property T (4), then it has property T − 12. This statement is

the consequence of the following two results proved by Eckhoff and that are of

special interest. We note that Theorem 1 deals with any family of ovals and not

only with families of disjoint translates, and that Theorem 2 is used throughout

the rest of the paper.

Let c denote the smallest positive integer such that F(K) may be partitioned

into c subfamilies such that each subfamily has property T . In this case we say

that F(K) has property T c.

Theorem 1 (Eckhoff [9], 1973): For any family of ovals in the plane,

T (4) ⇒ T 2. Moreover, one may either choose the two lines to be orthogonal or

one may specify the direction of one of the lines.

Theorem 2 (Eckhoff [9], 1973): For any oval K ⊂ R
2 and family F(K), we

have

T (3) ⇒ T 2.
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Moreover, the two partial transversals may be chosen to be parallel and not

farther apart than the relative width of K in their common direction.

We denote points of the plane by a, b, . . . and all other subsets by A, B, . . ..

As before, the convex hull of A ∪ B is denoted by [A, B], and for two disjoint

disks, the tangential separators are the two common tangents that separate

them.

By Theorem 2, there exist disks W 6= Z in F(K) such that U ∩ [W, Z] 6= ∅ for

any U ∈ F \ {W, Z}. Let S1 and S2 denote the two supporting lines of [W, Z]

that meet both W and Z.

Since in this article we deal with families of unit disks, the reader should have

the following figure in mind.

1S

S

W Z

2

Figure 1

The following argument is due to Holmsen [17, 18]. Let F(K) denote a family

of ovals that has property T (4), and let L1 and L2 be the two partial transversal

lines which intersect all members of F(K). The existence of L1 and L2 follows

from Eckhoff’s results. Let S be a strip of width at most 3 diam(K) that contains

all members of F(K). We may further assume that L2 is orthogonal to S. Then

any translate of K which intersects L2 is contained in a parallel strip, of width

2 diam(K) and centred at L2. Therefore, all translates of K which are disjoint

from L1, are in S ∩ T whose area is at most 6 diam2(K). With a suitable affine

transformation, one obtains that the area of K is at least 1/2 diam2(K). This

implies that L1 misses at most 12 elements of F(K).

Similar questions arise naturally for higher dimensions. For brevity, we out-

line only the most recent developments. Higher dimensional generalisations for

families of balls were initiated by Problem 107 [14] of Hadwiger, which states

that for any family of thinly distributed balls in R
n, the property T (n2) im-

plies T . A family of balls is thinly distributed if the distance between the
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centres of any two balls is at least twice the sum of their radii. Grünbaum [12]

used the Topological Helly Theorem to prove that T (2n − 1) implies T under

the same conditions. Ambrus, Bezdek and Fodor [1] recently showed that T (n2)

implies T when the mutual distances of the centres of the n-dimensional unit

balls are at least 2
√

2 +
√

2. Holmsen, Katchalski and Lewis [19] proved that

there exists a positive integer n0 ≤ 46 such that T (n0) implies T for any family

of pairwise disjoint unit balls in R
3. This bound was later improved by Cheong,

Goaoc and Na [7] to 18. Finally, Cheong, Goaoc, Holmsen and Petitjean [6]

established that T (4n − 1) ⇒ T for any family of pairwise disjoint unit balls

in R
n. Holmsen and Matoušek [20] have recently shown that there is no such

Helly-number for families of pairwise disjoint translates of an arbitrary convex

body in R
3. This indicates that the results above do not extend to translates

of convex bodies in R
n.

Henceforth, let F be a finite family of mutually disjoint unit disks with the

property T (4). In view of the above, it remains to determine if F has the

property T − 1.

2. Earlier Results

It has been proved in [4] and [5] that F has the property T − 1 in the case

|F| ≤ 9. In this section we outline the arguments described in these articles to

help understand the general proof.

Let n = |F| ≤ 7. Consider F = {W, A, B, C, D, E, Z} with, say, A, B meeting

S2 and C, D, E meeting S1, and the understanding that E is missing in the case

|F| = 6. In the latter case, assume that M is a transversal for F \ {A, C} and

N is a transversal for F \ {B, D}. If N is not a 5-transversal, then N strictly

separates B and D. If a line strictly separates A and C, then it intersects

N between N ∩ A and N ∩ C, and as a consequence, it is disjoint form B or

D. Thus, M meets A or C. The proof, when n = 7, requires a detailed case

analysis. The basic assumption is that H is a transversal of {W, C, D, E, Z},
which is disjoint from A and B and is in limit position with respect to A in such

a way that the distance between H and A is a minimum. The extreme property

of H and the relative positions of H ∩ (W ∪C ∪D ∪E ∪Z) yield the existence

of two sets U and V in F \ {A, B} that may be tangential to H in two different

ways. The first is when H is a tangential separator of U and V , and the second

is when H tangentially supports [U, V ]. A delicate analysis (using the property
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T (4), the angles between tangent lines and the geometric properties of disks)

yields that F has a 7-transversal.

Next, we assume n = |F| ≥ 8 and proceed by induction. From [4], we observe

that F has the property T − 1 if at most two disks of F \ {W, Z} meet one Si.

Our method of proof is inductive, and applicable when n ≥ 8. Accordingly,

F has many (n − 2)-transversals, and we show that certain of them yield the

existence of either an (n− 1)-transversal or a separating (n− 2)-transversal. In

the latter case, we apply the following from [5]:

Lemma: If n = |F| ≥ 8 and F has a separating (n− 2)-transversal, then F has

the property T − 1.

Since this lemma is the cornerstone of our argument, we give a brief outline

of its proof.

Assume that H is an (n − 2)-transversal of F that strictly separates U and

V , {U, V } ⊂ F . Without loss of generality, we may assume that H is hori-

zontal. Let L and L′ be the tangential separators for U and V . Note that

some vertical line that meets [U, V ] is disjoint from every Bi ∈ H, where

H = {Bi ∈ F\{U, V } : Bi∩[U, V ] = ∅}. Hence, the transversal for {U, V, Bi} has

either positive slope or negative slope. Assume the former. Then the property

T (4) for {U, V, Bi, Bj} yields only positive-sloped transversals for each Bj ∈ H.

Thus each Bi ∈ H meets L or L′ depending upon which has smaller positive

slope.

Next, we assume that H is an (n − 2)-transversal that strictly separates U

and V , and there is a line orthogonal to H that intersects U and V . We prove

in [5] that there is an (n − 1)-transversal of F or an (n − 2)-transversal H ′

and {U ′, V ′} ⊂ F such that H ′ strictly separates U ′ and V ′, and at most two

elements of F \ {U ′, V ′} meet the line segment H ′ ∩ [U ′, V ′].

In view of this result, it is sufficient to prove that F has an (n−1)-transversal

if no line orthogonal to H intersects both U and V , or if at most two elements

of F \ {U, V } meet the line segment H ∩ [U, V ]. The former can be proved by a

simple argument while the latter requires a case analysis which depends on the

relative positions of the partial transversal H and the elements of F \ {U, V }.
For more details, see [5].
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3. T (4) implies T − 1

Main Theorem: Let F be a finite family of mutually disjoint unit disks with

the property T (4). Then F has the property T − 1.

Before embarking on the proof of the Main Theorem, we give a brief outline

of the argument in order to help the reader understand the details. First of all,

we choose two special (n− 2)-transversals of the family F , one of which avoids

W and another disk X , the other avoids Z and a disk Y in such a way that

they are not separating (n−2)-transversals. The proof has two major parts. In

the first part, we consider the case when these two chosen (n − 2)-transversals

have slopes of the same sign, say negative, cf. Figure 2, and assume that the

(n − 2)-transversal avoiding W and X is in limit position in such a way that

its distance from W ∪X is minimal. Under these assumptions, using a delicate

case analysis, we determine the positions of the other elements of F and show

that either the family F has an (n − 1)-transversal or there is a separating

(n − 2)-transversal. In the second part of the proof, we assume that the two

(n − 2)-transversals have slopes of different signs, cf. Figure 3. We choose the

(n−2)-transversals again in limit positions such that they determine a minimal

acute angle. Now, this configuration gives rise to three possible combinations of

the relative positions of the disks X and Y according to which Si they intersect.

In each case, with a detailed case analysis, we establish the possible positions

of the other members of F and either directly find an (n − 1)-transversal or a

separating (n − 2)-transversal.

Proof. Clearly, we may assume that each Si meets at least three disks of

F \ {W, Z}. We let S̃i = Si ∩ [W, Z], and assume that the Si’s are horizon-

tal; (cf. Figure 1.)

By induction, F \ {W} has an (n − 2)-transversal that is disjoint from, say,

X ∈ F \ {W}. Let Twx denote such a line. Similarly, there is an (n − 2)-

transversal of F that is disjoint from Z and a disk Y ∈ F \ {Z}. Let Tzy

denote such a line. By the Lemma, we may assume that no Twx and no Tzy is

a separating (n − 2)-transversal. Let F ′ = F \ {X, Y, Z, W}. Clearly, we may

assume that no disk of F ′ meets both S1 and S2. If some disk C in F \ {W, Z}
meets both S1 and S2, then choosing an (n − 2)-transversal L that does not

meet C readily yields that L does not meet both W and Z. Assume that L

does not meet W . Then clearly C is the disk of this type that is closest to W .
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Thus, there are at most two such disks of this type which we may assume are

X and Y .

We assume that all Twx and all Tzy have slopes of the same sign. Let w(z)

denote the point in int(K) that is contained in Tzy ∩bd(W ) (Twx ∩bd(Z)), and

let N be the line through w and z. We consider a disk A with the property

that S2 ∩ A 6= ∅ and N ∩ A = ∅. Then either Twx ∩ A = ∅ and A = X , or

Twx ∩ A 6= ∅ and Twx ∩ Z ⊂ [Twx ∩ A, Twx ∩ U ] for any U ∈ (F ′ ∪ {Y }) \ {A}.
Similarly, a disk B that meets S1 and that is disjoint from N has the property

that either B ∩ Tzy = ∅ and B = Y or Tzy ∩ W ⊂ [Tzy ∩ B, Tzy ∩ U ] for any

U ∈ (F ′ ∪ {X}) \ {B}.
We note that if there are at most one such A and at most one such B for some

Twx and Tzy, then N is either an (n − 1)-transversal or a separating (n − 2)-

transversal. Accordingly, we may assume that there are two disks disjoint from

N and meeting S2. These disks are necessarily X , a unique A2 ∈ F ′∪{Y }, and

Twx ∩ Z ⊂ [Twx ∩ A2, Twx ∩ U ] for all U ∈ (F ′ ∪ {Y }) \ {A2} and for all Twx.

We choose now a Twx in a limit position; that is, we assume that Twx is

closest to W ∪ X . If Twx is a tangential separator of Z and A2, then it follows

from T (4) and the property of Twx that all elements of F \ {X} meet the other

tangential separator of Z and A2. Otherwise, Twx supports from below some

U 6= Z that meets S1, and Twx is either a tangential separator of U and A2 or a

line of common support for U and Z. In either case, M ∩Z ⊂ [M ∩A2, M ∩U ]

for any transversal M of {A2, U, Z}. Then T (4) for {A2, U, Z, W} yields that

one such oriented M meets the disks in the order (w, u, z, a2) or (u, w, z, a2);

both of which contradict the limit property of Twx.

Tzy

2 wx

N

W Y Z

S T

Figure 2
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Let some Twx have slope of the same sign, say positive, and let some Tzy have

negative slope. We assume the following:

There is no (n − 1)-transversal of F that meets both W and Z.

Hence, there is an L = Twx and an M = Tzy that determine a minimum

acute angle α. Since |F ′| ≥ 4 and L and M are transversals of F ′, it readily

follows that α < 60◦.

Let L∩M = {p} and denote by L+ (L−) and M+ (M−) the open half-lines of

L and M , respectively, that are right (left) of p. Let Sp denote the line through

p parallel to Si, cf. Figure 3.

Next, let U ∈ F ′. We say that U is vertical if U meets L+ and M+, or

L− and M−, and that U is horizontal if L ∩ U ⊂ L+ and M ∩ U ⊂ M−, or

L ∩ U ⊂ L− and M ∩ U ⊂ M+.

We note that there is a supporting line Su of U that is parallel to Si and

meets both W and Z.

Finally, we denote also by A∗, Ã, A1, A2, . . . (B∗, B̃, B1, B2, . . .) the elements

of F ′ that intersect S1 (S2). We let Su = S∗
a if U = A∗, and define S̃a, S∗

b and

S̃b in similar manner.

1S

S

M L

ZW

L M

p

−

− +

+

α

p

Figure 3

Observations:

(1) Each U ∈ F ′ is either vertical or horizontal.

(2) If U ∈ F ′ is vertical, then U meets Sp.

(3) α < 60◦ implies that at most one Ai, denoted by A∗, and at most one

Bj , denoted by B∗, are horizontal.
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(4) If A∗ and B∗ exist, then S∗
a is a transversal of F \ {X, Y, B∗}, and S∗

b

is a transversal of F \ {X, Y, A∗}.
(5) If A∗ exists but B∗ does not, then either S∗

a is a transversal of F\{X, Y }
or there is at most one Bj , denoted by B̃, such that B̃ meets either M+

and [p, L+ ∩ A∗], or L− and [p, M−, A∗].

(6) If A∗ and B̃ exist, then S∗
a is a transversal of F \ {X, Y, B̃}, and S̃b is

a transversal of F \ {X, Y, A∗}.

We note that there are analogous statements to (5) and (6) with A and B

interchanged.

We consider now the possible positions of X and Y , and observe that

slope M < 0 < slope L implies that S̃2 meets M and L.

Case I: S̃i ∩ X 6= ∅ 6= S̃j ∩ Y , i 6= j

We may assume that, say, S̃1 ∩ X 6= ∅ 6= S̃2 ∩ Y . It is easy to check that

p 6∈ [W, Z] implies that at most two disks of F\{W, Z} meet S̃1. Then p ∈
[W, Z], and Sp intersects W, Z and Y . Thus, if neither A∗ nor B∗ exist, then

Sp is a transversal of F \ {X} by (2). This contradicts that there is no (n− 1)-

transversal of meeting both W and Z.

If A∗ exists, then α < 60◦ implies that Y meets S∗
a , and we may assume that

either B∗ or B̃ exists, and that S∗
a ∩ (X ∪ U) = ∅ for U ∈ {B∗, B̃}. We note

that S∗
a separates X and U , and that S∗

a is a transversal of F \ {X, U} by (4)

or (6).

Let B∗ exist. Then S∗
b meets Y , and we may assume from above that Ã exists.

By (6), we obtain now that S̃a is a separating transversal of F \ {X, B∗}.

Case II: S̃2 ∩ X 6= ∅ 6= S̃2 ∩ Y

We note that X = Y implies that p 6∈ [W, Z] and that no U ∈ F ′ intersects

S1; that is, S2 is a transversal of F .

Let X 6= Y . From above, we may assume that p ∈ [W, Z]. Then p ∈ [X, Y ]

and Sp intersects X, Y, W and Z. By (2), Sp is a transversal of F \ {A, B},
where A ∈ {A∗, Ã} and B ∈ {B∗, B̃}. We may assume that such A and B

exist, and that Sp ∩ (A ∪ B) = ∅. Clearly, Sp separates A and B.

Case III: S̃1 ∩ X 6= ∅ 6= S̃1 ∩ Y

First, if X = Y , then we deduce from the Observations that p ∈ [W, Z]. We

argue now as in Case II in regards to the possible existence of A∗, B∗ and Ã,
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and thus obtain a separating (n−2)-transversal or an (n−1)-transversal in each

case. Let X 6= Y . Then, in view of Case II, we may assume that p 6∈ [X, Y ].

Since α is minimal, M (L) is a separating tangent of disks U and V (C and

D) such that S̃1 ∩ U 6= ∅ 6= S̃1 ∩ C and S̃2 ∩ V 6= ∅ 6= S̃2 ∩ D; cf. Figure 4 for

the relative positions of p with respect to U and V (C and D).

U

V

M

U

V

M

D

C

L

D

C

L

D

C

L

p

p

p

a) b) c)

U

V

M

p

p

p

d) e)
f)

Figure 4

Observations:

(7) If U = C, then U = A∗ = C, and if V = D then V = B∗ = D.

(8) V = B∗ in case of b) or c), and D = B∗ in case of e) or f).

(9) U ∈ {X, A∗} in case of a) or b), and C ∈ {Y, A∗} in case of d) or e).

(10) U = A∗ and a) imply that V = B̃, and C = A∗ and d) imply that

D = B̃.

It is easy to check that if U = C and V = D, then {W, A∗, B∗, Z} has no

transversal. We note that {U, C} ∩ {X, Y } = ∅ implies that L meets U , M
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meets V , and thus, U = C. From (7) to (10); U = C yields that V 6= D,

U = A∗ = C and a) or b).

If a), then V = B̃, B∗ does not exist and d). But C = A∗ and d) imply

D = B̃ = V ; a contradiction. If b), then V = B∗, B̃ does not exist and

d). Again, C = A∗ and d) imply D = B̃; a contradiction. Thus U 6= C and

{U, C} ∩ {X, Y } 6= ∅. In view of the symmetry between L and M , we may

assume that, say, U = X , cf. Figure 5.

Let M denote the other tangential separator of X and V . We note that

V ∩ [X, Z] = ∅ = Z ∩ [V, X ].

Thus, T (3) for {V, X, Z} implies that M meets Z, and T (4) for {W, V, X, Z}
implies that M meets W . From this, it follows that

X ∩ [V, Z] 6= ∅ 6= V ∩ [W, X ].

M

S

W

Y

M

D

Z

X

VS
~

2

1
~

_

Figure 5

Since L = Twx separates D and [W, X ], if follows from V ∩ [W, X ] 6= ∅ that

D 6= V . Thus, (8) implies that M satisfies a) or L satisfies d). It is now easy to

check that M separates S̃1 and p, and thus, it follows from the fact that each

Ai ∈ F ′ intersects S1, L and M , that Ai ∩ M 6= ∅. Next, p ∈ [V, D] follows

from the fact that both L and M meet V and D, and thus, M intersects each

Bj ∈ F ′ that is disjoint from [V, Z].

Finally, we consider the disks Bj that are distinct from V and meet both S̃2

and [V, Z]. We note that if Bj ∩ [X, V ] = ∅, then T (4) for {X, V, Bj, Z} yields

that M intersects Bj . Thus, M intersects all members of F ′ with the possible
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exception of Y and those Bj 6= V that meet [X, V ]. It is clear that there is at

most one such Bj , say, B, and if M ∩B = ∅, then M separates Y and B.

Note, that while it is possible that our proof is applicable to any planar family

of disjoint translates of an arbitrary oval, the dependence of our argument in

the case of seven disjoints disks upon a specific configuration (cf. Figure 4 of

[4]) of eight disks seems to indicate that the possibility is remote.
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