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1. Introduction

Let F denote a family of ovals (compact convex sets with non-empty interior)
in the Euclidean plane. F has a transversal and the property T, if there
exists a line that intersects all members of F. If there is a line that meets
all but at most k£ members of F, then F has the property T — k. Next, if
each n-element subfamily of F has a transversal, then F has property T(n).
Finally, an m-transversal of F is a line that meets at least m elements of F.
An m-transversal is separating if there are elements of F in each of the open
half-planes determined by it.

A central problem of Transversal Theory is to determine for a given F, the
smallest n such that T'(n) implies T. We recall briefly the history of the problem
and refer to [4], [8], [10], [15] and [18] for a more detailed review.

A. (L. Santald [23], 1940). There is a finite family F of not mutually
disjoint ovals such that T'(n) does not imply 7" for any n < |F|.

B. (H. Hadwiger [13], 1956). If F is an infinite family of mutually disjoint
congruent ovals, then T'(3) implies T

Henceforth, we assume that F is finite and that the ovals of F are mutually
disjoint.

C. (B. Griinbaum [11], 1958). There is a family F of congruent ovals such
that T'(5) does not imply T'.

D. (H. Tverberg [25], 1989). If F is a family of translates of an oval, then
T'(5) implies T.

E. (B. Aronov, J. Goodman, R. Pollack and R. Wenger [2], 2000). There
is a family F of unit disks such that 7'(4) does not imply T'.

F. (M. Katchalski, T. Lewis [22], 1980). If F is a family of translates of
an oval, then 7'(3) implies T'— k for some universal constant k.

G. (A. Bezdek [3], 1991). There is a family F of unit disks such that 7'(3)
does not imply 7" — 1.

H. (T. Kaiser [21], 2002). If F is a family of unit disks, then 7'(3) implies

T —12.
I. (A. Heppes [16], 2004). If F is a family of unit disks, then T'(3) implies
T—2.

Although in this article we concentrate on families of unit disks, we mention
that it is widely believed that T'(4) = T — 1 for families F(K) of pairwise
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disjoint translates of an arbitrary oval K. The following argument shows that
if there exists a counter-example to this conjecture, then there is one with at
most twelve elements. The original argument is described in [24] for the case
when F has the property T'(3) and T — 3 but not 7' — 2; and it also appears in
[18].

Suppose that the family F(K) has properties T'(4) and T'— 2 but not 7' — 1
and also assume that F is minimal. We are going to construct a hypergraph G
whose vertices correspond to the members of F. To every 5-element subset of
F(K), which does not have property T, associate an edge of G. In this way,
we obtain a 5-uniform hypergraph. By Tverberg’s theorem, there is at least
one 5-element subset of F which does not have property 7', so G has at least
one edge. The transversal number of a hypergraph is the minimum number
of vertices that intersect all edges. In the case of G, the transversal number is
clearly two because F has the property T'— 2. It is a known fact in extremal
graph theory that a 5-uniform hypergraph with transversal number two has an
induced subgraph G’ on at most twelve vertices with transversal number two.
Such a G’ induces a subfamily of F(K) which has at most twelve members, has
properties T'(4) and T — 2 but not 7' — 1. Such a subfamily would clearly be a
counterexample for the conjecture.

Furthermore, if F(K) is a family of pairwise disjoint translates of an oval
K which has property T'(4), then it has property 7" — 12. This statement is
the consequence of the following two results proved by Eckhoff and that are of
special interest. We note that Theorem 1 deals with any family of ovals and not
only with families of disjoint translates, and that Theorem 2 is used throughout
the rest of the paper.

Let ¢ denote the smallest positive integer such that F(K) may be partitioned
into ¢ subfamilies such that each subfamily has property T'. In this case we say
that F(K) has property T°.

THEOREM 1 (Eckhoff [9], 1973): For any family of ovals in the plane,
T(4) = T?. Moreover, one may either choose the two lines to be orthogonal or
one may specify the direction of one of the lines.

THEOREM 2 (Eckhoff [9], 1973): For any oval K C R? and family F(K), we
have

T(3) = T2
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Moreover, the two partial transversals may be chosen to be parallel and not
farther apart than the relative width of K in their common direction.

We denote points of the plane by a,b, ... and all other subsets by A, B, ....
As before, the convex hull of AU B is denoted by [A, B], and for two disjoint
disks, the tangential separators are the two common tangents that separate
them.

By Theorem 2, there exist disks W # Z in F(K) such that UN[W, Z] # () for
any U € F\ {W,Z}. Let S; and Ss denote the two supporting lines of [W, Z]
that meet both W and Z.

Since in this article we deal with families of unit disks, the reader should have
the following figure in mind.

Figure 1

The following argument is due to Holmsen [17, 18]. Let F(K) denote a family
of ovals that has property T'(4), and let Ly and Lz be the two partial transversal
lines which intersect all members of F(K). The existence of L; and Lo follows
from Eckhoff’s results. Let .S be a strip of width at most 3 diam(K) that contains
all members of F(K). We may further assume that Ly is orthogonal to S. Then
any translate of K which intersects Lo is contained in a parallel strip, of width
2diam(K) and centred at Lo. Therefore, all translates of K which are disjoint
from Ly, are in S NT whose area is at most 6 diam?(K ). With a suitable affine
transformation, one obtains that the area of K is at least 1/2 diam?(K). This
implies that L; misses at most 12 elements of F(K).

Similar questions arise naturally for higher dimensions. For brevity, we out-
line only the most recent developments. Higher dimensional generalisations for
families of balls were initiated by Problem 107 [14] of Hadwiger, which states
that for any family of thinly distributed balls in R", the property T'(n?) im-
plies T. A family of balls is thinly distributed if the distance between the
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centres of any two balls is at least twice the sum of their radii. Griinbaum [12]
used the Topological Helly Theorem to prove that T'(2n — 1) implies 7" under
the same conditions. Ambrus, Bezdek and Fodor [1] recently showed that T'(n?)
implies T' when the mutual distances of the centres of the n-dimensional unit
balls are at least 24/2 + v/2. Holmsen, Katchalski and Lewis [19] proved that
there exists a positive integer ng < 46 such that T'(no) implies 7' for any family
of pairwise disjoint unit balls in R3. This bound was later improved by Cheong,
Goaoc and Na [7] to 18. Finally, Cheong, Goaoc, Holmsen and Petitjean [6]
established that T'(4n — 1) = T for any family of pairwise disjoint unit balls
in R™. Holmsen and Matousek [20] have recently shown that there is no such
Helly-number for families of pairwise disjoint translates of an arbitrary convex
body in R3. This indicates that the results above do not extend to translates
of convex bodies in R”.

Henceforth, let F be a finite family of mutually disjoint unit disks with the
property T'(4). In view of the above, it remains to determine if F has the
property T — 1.

2. Earlier Results

It has been proved in [4] and [5] that F has the property T'— 1 in the case
|F| < 9. In this section we outline the arguments described in these articles to
help understand the general proof.

Let n = |F| < 7. Consider F = {W, A, B,C, D, E, Z} with, say, A, B meeting
So and C, D, E meeting S7, and the understanding that F is missing in the case
|F| = 6. In the latter case, assume that M is a transversal for F \ {4, C} and
N is a transversal for F \ {B, D}. If N is not a 5-transversal, then N strictly
separates B and D. If a line strictly separates A and C, then it intersects
N between N N A and N NC, and as a consequence, it is disjoint form B or
D. Thus, M meets A or C. The proof, when n = 7, requires a detailed case
analysis. The basic assumption is that H is a transversal of {W,C, D, E, Z},
which is disjoint from A and B and is in limit position with respect to A in such
a way that the distance between H and A is a minimum. The extreme property
of H and the relative positions of HN (W UCUDUFE U Z) yield the existence
of two sets U and V in F \ {A, B} that may be tangential to H in two different
ways. The first is when H is a tangential separator of U and V', and the second
is when H tangentially supports [U, V]. A delicate analysis (using the property
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T(4), the angles between tangent lines and the geometric properties of disks)
yields that F has a 7-transversal.

Next, we assume n = |F| > 8 and proceed by induction. From [4], we observe
that F has the property T'— 1 if at most two disks of F \ {W, Z} meet one S;.
Our method of proof is inductive, and applicable when n > 8. Accordingly,
F has many (n — 2)-transversals, and we show that certain of them yield the
existence of either an (n — 1)-transversal or a separating (n — 2)-transversal. In
the latter case, we apply the following from [5]:

LEMMA: Ifn = |F| > 8 and F has a separating (n — 2)-transversal, then F has
the property T — 1.

Since this lemma is the cornerstone of our argument, we give a brief outline
of its proof.

Assume that H is an (n — 2)-transversal of F that strictly separates U and
V, {U,V} c F. Without loss of generality, we may assume that H is hori-
zontal. Let L and L’ be the tangential separators for U and V. Note that
some vertical line that meets [U,V] is disjoint from every B; € H, where
H ={B; € F\{U,V}: B;N|U, V] = 0}. Hence, the transversal for {U, V, B;} has
either positive slope or negative slope. Assume the former. Then the property
T'(4) for {U,V, B;, B;} yields only positive-sloped transversals for each B; € H.
Thus each B; € H meets L or L' depending upon which has smaller positive
slope.

Next, we assume that H is an (n — 2)-transversal that strictly separates U
and V', and there is a line orthogonal to H that intersects U and V. We prove
in [5] that there is an (n — 1)-transversal of F or an (n — 2)-transversal H’
and {U’,V'} C F such that H' strictly separates U’ and V', and at most two
elements of F \ {U’, V'} meet the line segment H' N [U’, V'].

In view of this result, it is sufficient to prove that F has an (n—1)-transversal
if no line orthogonal to H intersects both U and V, or if at most two elements
of F\ {U,V} meet the line segment H N[U, V]. The former can be proved by a
simple argument while the latter requires a case analysis which depends on the
relative positions of the partial transversal H and the elements of F \ {U,V}.
For more details, see [5].
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3. T(4) implies T — 1

MAIN THEOREM: Let F be a finite family of mutually disjoint unit disks with
the property T(4). Then F has the property T — 1.

Before embarking on the proof of the Main Theorem, we give a brief outline
of the argument in order to help the reader understand the details. First of all,
we choose two special (n — 2)-transversals of the family F, one of which avoids
W and another disk X, the other avoids Z and a disk Y in such a way that
they are not separating (n — 2)-transversals. The proof has two major parts. In
the first part, we consider the case when these two chosen (n — 2)-transversals
have slopes of the same sign, say negative, cf. Figure 2, and assume that the
(n — 2)-transversal avoiding W and X is in limit position in such a way that
its distance from W U X is minimal. Under these assumptions, using a delicate
case analysis, we determine the positions of the other elements of F and show
that either the family F has an (n — 1)-transversal or there is a separating
(n — 2)-transversal. In the second part of the proof, we assume that the two
(n — 2)-transversals have slopes of different signs, cf. Figure 3. We choose the
(n— 2)-transversals again in limit positions such that they determine a minimal
acute angle. Now, this configuration gives rise to three possible combinations of
the relative positions of the disks X and Y according to which S; they intersect.
In each case, with a detailed case analysis, we establish the possible positions
of the other members of F and either directly find an (n — 1)-transversal or a

separating (n — 2)-transversal.

Proof. Clearly, we may assume that each S; meets at least three disks of
F\{W,Z}. We let S; = S; N [W, Z], and assume that the S;’s are horizon-
tal; (cf. Figure 1.)

By induction, F \ {W} has an (n — 2)-transversal that is disjoint from, say,
X € F\{W}. Let Ty, denote such a line. Similarly, there is an (n — 2)-
transversal of F that is disjoint from Z and a disk Y € F\ {Z}. Let T,
denote such a line. By the Lemma, we may assume that no T3,, and no T, is
a separating (n — 2)-transversal. Let /' = F \ {X,Y, Z, W}. Clearly, we may
assume that no disk of " meets both S; and Ss. If some disk C' in F'\ {W, Z}
meets both S; and Sa, then choosing an (n — 2)-transversal L that does not
meet C readily yields that L does not meet both W and Z. Assume that L
does not meet W. Then clearly C' is the disk of this type that is closest to W.
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Thus, there are at most two such disks of this type which we may assume are
X and Y.

We assume that all Ty, and all T, have slopes of the same sign. Let w(z)
denote the point in int(XK) that is contained in T,, Nbd(W) (T, Nbd(Z)), and
let N be the line through w and z. We consider a disk A with the property
that SoNA # @ and NN A = (. Then either Ty, NA =0 and A = X, or
Twe NA#D and Ty N Z C [Tpa N A, Ty NU] for any U € (F'U{Y})\ {4}.
Similarly, a disk B that meets S; and that is disjoint from N has the property
that either BNT,, =0 and B=Y or T, NW C [T,, N B,T,, N U] for any
Ue (FFu{XH\{B}.

We note that if there are at most one such A and at most one such B for some
Twe and Ty, then N is either an (n — 1)-transversal or a separating (n — 2)-
transversal. Accordingly, we may assume that there are two disks disjoint from
N and meeting S>. These disks are necessarily X, a unique Ay € F'U{Y}, and
Twe N Z C [Twz N Az, Ty NU] for all U € (F'U{Y'}) \ {A2} and for all T,,,.

We choose now a T, in a limit position; that is, we assume that T, is
closest to WU X. If Ty, is a tangential separator of Z and As, then it follows
from T'(4) and the property of Ty, that all elements of F \ {X} meet the other
tangential separator of Z and As. Otherwise, Ty, supports from below some
U # Z that meets S1, and T, is either a tangential separator of U and As or a
line of common support for U and Z. In either case, M NZ C [M N Az, M NU]
for any transversal M of {As,U,Z}. Then T(4) for {As,U, Z, W} yields that
one such oriented M meets the disks in the order (w,u, z,as2) or (u,w,z, az);
both of which contradict the limit property of T,,,.

Figure 2
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Let some T, have slope of the same sign, say positive, and let some T, have
negative slope. We assume the following:

There is no (n — 1)-transversal of F that meets both W and Z.

Hence, there is an L = Ty, and an M = T, that determine a minimum
acute angle a. Since |F'| > 4 and L and M are transversals of F', it readily
follows that a < 60°.

Let LNM = {p} and denote by L* (L~) and M+ (M) the open half-lines of
L and M, respectively, that are right (left) of p. Let S, denote the line through
p parallel to S;, cf. Figure 3.

Next, let U € F'. We say that U is vertical if U meets LT and M, or
L~ and M, and that U is horizontal if LNU C L™ and M NU C M~, or
LNUCL andMNUCMT.

We note that there is a supporting line S, of U that is parallel to S; and
meets both W and Z.

Finally, we denote also by A*, fl, Ay, Aa, ... (B, B, By, Bs,...) the elements
of F' that intersect Sy (S2). We let S, = S* if U = A*, and define SNa,S{j and

Sp in similar manner.

Figure 3

Observations:

(1) Each U € F' is either vertical or horizontal.

(2) U € F' is vertical, then U meets S,.

(3) a < 60° implies that at most one A;, denoted by A*, and at most one
B;, denoted by B*, are horizontal.
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(4) If A* and B* exist, then S} is a transversal of F \ {X,Y, B*}, and S}
is a transversal of F \ {X,Y, A*}.

(5) If A* exists but B* does not, then either S} is a transversal of F\{X,Y}
or there is at most one Bj, denoted by B, such that B meets either M T
and [p, LT N A*], or L™ and [p, M, A*].

(6) If A* and B exist, then S is a transversal of F \ {X,Y, B}, and S, is
a transversal of F \ {X,Y, A*}.

We note that there are analogous statements to (5) and (6) with A and B
interchanged.

We consider now the possible positions of X and Y, and observe that
slope M < 0 < slope L implies that S, meets M and L.

Case It SiNX£0#S;NY,i#j

We may assume that, say, S N X # 0 # S, NY. It is easy to check that
p & [W, Z] implies that at most two disks of F\{W, Z} meet S;. Then p €
[W, Z], and S, intersects W, Z and Y. Thus, if neither A* nor B* exist, then
Sy is a transversal of F\ {X} by (2). This contradicts that there is no (n —1)-
transversal of meeting both W and Z.

If A* exists, then a < 60° implies that Y meets S, and we may assume that
either B* or B exists, and that S* N (X UU) = () for U € {B*, B}. We note
that S} separates X and U, and that S} is a transversal of F \ {X,U} by (4)
or (6).

Let B* exist. Then S; meets Y, and we may assume from above that A exists.
By (6), we obtain now that S, is a separating transversal of F \ {X, B*}.

Case II: SsNX A0 #4S,NY

We note that X =Y implies that p ¢ [W, Z] and that no U € F’ intersects
S1; that is, Sy is a transversal of F.

Let X # Y. From above, we may assume that p € [W, Z]. Then p € [X,Y]
and S, intersects X,Y,W and Z. By (2), S, is a transversal of F \ {4, B},
where A € {A* A} and B € {B*,B}. We may assume that such A and B
exist, and that S, N (AU B) = 0. Clearly, S, separates A and B.

Case III: SS\NX #0485 NY
First, if X =Y, then we deduce from the Observations that p € [W, Z]. We
argue now as in Case II in regards to the possible existence of A*, B* and A,
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and thus obtain a separating (n—2)-transversal or an (n—1)-transversal in each
case. Let X # Y. Then, in view of Case II, we may assume that p ¢ [X,Y].

Since « is minimal, M (L) is a separating tangent of disks U and V' (C and
D) such that $; NU # 0 # S, NC and Sy NV # 0 # S, N D; cf. Figure 4 for
the relative positions of p with respect to U and V' (C and D).

p
P
a) b) 2
P
M M
M
P
d) € b f
() (> (>
L L L

Figure 4

Observations:

(1) U =C,then U=A*=C,and if V=D then V = B* = D.
(8) V = B* in case of b) or ¢), and D = B* in case of e) or f).
(9) U € {X, A*} in case of a) or b), and C € {Y, A*} in case of d) or e).
(10) U = A* and a) imply that V = B, and ¢ = A* and d) imply that
D=5.
It is easy to check that if U = C' and V = D, then {W, A*, B*, Z} has no
transversal. We note that {U,C} N {X,Y} = 0 implies that L meets U, M
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meets V, and thus, U = C. From (7) to (10); U = C yields that V # D,
U= A*=C and a) or b).

If a), then V = B, B* does not exist and d). But C = A* and d) imply
D = B = V; a contradiction. If b), then V' = B* B does not exist and
d). Again, C = A* and d) imply D = B; a contradiction. Thus U # C and
{U,C}n{X,Y} # 0. In view of the symmetry between L and M, we may
assume that, say, U = X, cf. Figure 5.

Let M denote the other tangential separator of X and V. We note that
VNniX,Z=0=2Zn|[V,X].

Thus, 7(3) for {V, X, Z} implies that M meets Z, and T'(4) for {W,V, X, Z}
implies that M meets W. From this, it follows that

XNV, 2] 404 V0 [W,X).

=

Figure 5

Since L = Ty, separates D and [W, X], if follows from V N [W, X] # 0 that
D # V. Thus, (8) implies that M satisfies a) or L satisfies d). It is now easy to
check that M separates S; and p, and thus, it follows from the fact that each
A; € F' intersects S1,L and M, that A, " M # (). Next, p € [V, D] follows
from the fact that both L and M meet V and D, and thus, M intersects each
Bj € F' that is disjoint from [V, Z].

Finally, we consider the disks B; that are distinct from V' and meet both Sy
and [V, Z]. We note that if B; N [X,V] =0, then T'(4) for {X,V, B, Z} yields
that M intersects B;. Thus, M intersects all members of F’ with the possible
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exception of Y and those B; # V that meet [X, V]. It is clear that there is at
most one such Bj, say, B, and if M N B = (), then M separates Y and B. |

Note, that while it is possible that our proof is applicable to any planar family

of disjoint translates of an arbitrary oval, the dependence of our argument in

the case of seven disjoints disks upon a specific configuration (cf. Figure 4 of

[4]) of eight disks seems to indicate that the possibility is remote.
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